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Abstract

The challenge of a network topology design is to pro-
vide a configuration with minimum cost given speci-

fied constraints. Network topology design is NP-hard

[1] and known algorithms to solve these problems run
in time that i~creases exponentially with the number

of choices. l% e economic importance of determining

the placement oj switches in an ATM network just(jies

heuristic methods to find a good configuration within a
reasonable amount of time. In this paper, two types of

heuristic algorithms are compared. The ,jirst algorithm

is based on swapping used switch locations with unused
switch locations. The second algorithm is a genetic al-

gorithm.

1 INTRODUCTION 1

The challenge of network design is to provide a good
configuration that is cost effective and provides high
performance for information services [2]. The opti-
mization of a network belongs to a class of problems
called NP-hard, so that no known algorithms run in
polynomial time. The known algorithms to solve these
problems run in exponential time with respect to the
number of choices [1]. In a network design the costs
are not linear because the capacities of the links and
switches must be selected from a finite discrete set.
Such hard combinatorial problems are usually solved
using heuristics [3].

1The tests described and the resulting data presented herein,

unless otherwise noted, were obtained from research conducted

under the Laboratory Discretionary Research and Development

Program of the United States Army Corps of Engineers by the

Waterways Experiment Stat ion. Permission was granted by the

Chief of Engineers to publish this information.

In the topology, capacity, and flow assignment prob-
lem (TCFA) for networks, the traffic demand between
geographic points is given and the problem is to define
the topology of the network, to specify the capacities
of the links and switches, and to determine the routes
of the traffic flows of information that minimize the
cost of the network under given constraints. Often the
constraint is formulated as maximum average delay.
Specific traffic flows result from the routing algorithm
used, such as the shortest path algorithm which routes
a flow over one path, or optimal routing that routes a
flow over multiple paths. Because a cost function for
TCFA typically exhibits several local minima, exact so-
lutions can only be calculated for unrealistically small
networks or unrealistically large run times. Heuristics
are required to approximate the global solution for any
but the smallest networks [4]. These heuristics are ini-
tialized at some feasible topology; then they repeat-
edly replace the current solution with some modifica-
tion that improves the cost and preserves feasibility.

Such heuristics can be applied to problems with di-
verse routing algorithms, constraint inequalities, and
cost functions, but the heuristic itself is characterized
by the set of trial networks that are to be considered
given the current topology and how the trial network is
selected. A trial topology might be generated by iden-
tifying under-utilized links for elimination or capacity
reduction. Or the capacities of over-utilized links could
be increased to meet the delay constraints in some trial
topology [3]. The greedy-drop heuristic successively
deletes the least utilized node to find the minimum
number of nodes that will support the traffic [5].

A node or branch can be exchanged to modify the
topology of the network. The branch exchange method
deletes a link between two nodes and adds a link
between two different nodes [6]. The cut-saturation
method identifies candidate branches by finding the



minimum number of highly utilized branches that
would divide the network into two separate networks
if deleted. The capacity of these branches is increased
or links are added between the two groups of nodes to
modify the topology of the network. A node exchange
deletes a node and adds a node. These methods can
be repeated with a new starting topology or a different
order of the same exchanges to look for a trial network
with lower cost [7].

Several heuristic algorithms have been reported for
designing asynchronous transfer mode (ATM) net-
works. Lo [8] develops a column-generation-based
heuristic that uses node dimensioning and allows multi-
path routing for traffic in the same class. Numerous lo-
cal minima occur when optimizing capacities and flows
of virtual paths (VP) in an ATM network. Gerla, Mon-
teiro, and Pazos [9] formulate the capacity and flow
assignment problem for the VP topology problem and
use the Frank-Wolfe steepest descent method to find a
local minimum from several random initial solutions;
the solution with the lowest average delay is chosen.
Mitra, Morrison, and Ramakrishnan [10] formulate the
optimization @ an ATM network at the call-level as
a multirate, cii-cuit-switched, loss network with equiv-
alent capacity requirements. They calculate the loss
probabilities using the fixed-point approach assuming
link independence. This approach terminates at a lo-
cal minimum, but they report satisfactoryy results by
repeating the procedure for several random initializa-
tions.

The key to approximating a solution is efficiently
evaluating a given topology and generating good initial
topologies [4]. One way to construct a feasible topology
is to assign the maximum allowable capacity to each
link and node [8]. Kershenbaum, Kermani, and Grover
present a heuristic for generating low-cost trees that
they suggest as a starting topology [11]. Dirilten and
Donaldson generate feasible low-cost trees using linear
regression clustering which could be used to initialize
a network design heuristic [12]. A clustering algorithm
called NEWCUST determines candidate concentrator
locations by creating a list of K nearest neighbors for
each node and determining which sites show up in the
lists most frequently [13]. A review of methods to gen-
erate network topologies that have properties of real
networks is presented in [14].

The genetic algorithm (GA) is another optimization
technique for approximating the global solution to a
complex problem space. It is based on “natural selec-
tion” of competing solutions and “genetic” encoding
of each of those solutions. A population of individu-
als, each defined by a set of chromosomes that repre-
sent a solution, is ranked according to the fitness of

the individual. Individuals are selected for reproduc-
tion, crossover, and mutation based on their relative
fitness. A “biased” roulette wheel based on the fit-
ness of the individual determines which individuals oc-
cur most frequently in the next generation. This is
repeated for several generations so that each genera-
tion tends to produce fitter solutions. GA was used
to expand existing computer networks while optimiz-
ing reliabilityy in [15]. A GA for minimizing the average
network delay of a spanning tree bridge network was
presented in [16]. The topology of a wide-area network
was optimized with GA in 117]. The embedded ATM
topology on digital cross-connects was optimized with
GA in [18].

The rest of this paper is organized as follows: In
Section 2, we state the problem of optimally locating
switches in ATM networks. Then, we develop a de-
sign heuristic algorithm based on swapping used ATM
switch locations with unused ATM switch locations in
Section 3. In Section 4, we present a genetic algorithm
for optimizing the locations of ATM switches. We com-
pare the two versions of swap algorithms with genetic
algorithm for a prototype problem with fiber, traffic,
and switches in Section 5.

2 STATEMENT OF THE PROBLEM

The problem is to minimize the cost of a network
given certain constraints on quality of service (QoS)
parameters for different classes of traffic flows. The
algorithm must input and consider the geographic lo-
cations of traffic sources, the expected traffic flows be-
tween these sources, the existing fiber plant, and the
cost and capacity of available switches. The proposed
algorithm will route the traffic, specify the location of
the switches, select the types of ATM switches from a
given list, specify the number of fibers required from
the existing fiber plant for this network, and specify
the capacity for each link to minimize the total cost,
which is also computed.

We make the following assumptions. Traffic sources
will be connected to the ATM switch that has the least
expensive path cost. Switch-to-switch traffic will be
routed with a shortest path algorithm. ATM switches
can be located only at a subset of given patch panel
locations for the fiber optic physical plant. The ATM
network will serve a campus environment under a single
administrator so that the total cost of ATM switches is
relevant and therefore ATM switches will not necessar-
ily be placed at every node. The capacity of the links
will be dimensioned in terms of effective bandwidth as
follows: the effective bandwidth of the switch-to-switch
links will be calculated by finding the minimum of the



flow model and Gaussian model. The effective band-
width of the source-to-switch traffic will be calculated
with the flow model [19].

Each ATM switch may have multiple capacity ports.
Traffic will be assigned to a switch by sorting the ef-
fective bandwidth of the links in decreasing order and
assigning them to the ports in decreasing order of ca-
pacity. The capacity of all links will be symmetric.

Once the locations of switches are determined, the
largest capacity switch will be assigned at each node.
Then, a greedy heuristic algorithm will be applied at
each node to determine the least cost switch that can
satisfy the QoS constraints.

Given the assumptions above the problem becomes
deciding which nodes will have switches. If there are N
number of nodes and S switches, then each node could
be in one of S + 1 states. It could either have no switch
or have one of the S types of switches. Therefore, there
are (S + l)N – 1 combinations that have at least one
switch. For a network with fifteen nodes and two types
of switches this is 14, 348, 906 possible combinations
that have at least one switch!

4

3 SWAP? ALGORITHM

We developed and implemented two swap algo-
rithms. The first is named SWAP1 w/K and the sec-
ond is SWAP2 w/K. Both swap algorithms use a clus-
tering algorithm to determine the candidate locations
for ATM switches. This algorithm creates lists of K
nearest neighbors for each node and determines the lo-
cations that appear in the lists most frequently [13].
Then, nodes are assigned to the candidate switch lo-
cation that has the least expensive path cost. Finally,
the two swap algorithms attempt to lower the cost of
the network by swapping used and unused switch lo-
cations in the candidate list. The only difference be-
tween SWAP1 w/K and SWAP2 w/K is that SWAP2
w/K attempts to delete nodes before doing the ran-
dom swaps. It successively deletes the highest cost per
bandwidth node until the minimum number of nodes
that will support the traffic with the given switch lo-
cations is found.

3.1

1.

2.

SWAP1 w/K

Find candidate switch sites with a clustering algo-
rithm that as a parameter finds K nearest neigh-
bors for each node [13].

Assign traffic to the switch that has the least ex-
pensive path cost, assign the largest switch to all
used sites, and find routes using a shortest path
algorithm.

3.

4.

5.

6.

7.

4

Assign switches at each used node in a greedy fash-
ion until the cheapest switch that supports the
traffic is found.

Evaluate the network topology cost. If cheaper
than the best, save it.

Swap a used and unused switch site randomly.

Go to step 2 until the maximum number of itera-
tions is reached.

Output the cheapest topology.

GENETIC ALGORITHM

An algorithm which we named GENETIC was mod-
ified from [20] and implemented. In the chromosome a
“l” represents a candidate switch location and a “- 1“
represents a node without a switch. Also, since the
code was designed for maximizing functions with posi-
tive values the fitness value was set to MAX_COST –

cost

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

to minimize the cost.

Initialize the population with POPSIZE random
members.

Evaluate the fitness of the population.

Use the elitist strategy.

Select members for the next generation by using
standard proportional selection. Find the cumu-
lative fitness of each member and spin a “biased”
roulette wheel.

Crossover two members with probability
PXOVER.

Mutate the gene of a member with probability
PMUTATION.

Evaluate the fitness of the population.

Use the elitist strategy.

Go to step 4 for the maximum number of genera-
tions, MAXGENS.

Output the cheapest topology.



/’\ /’\
‘\’ /2 ‘\’ /7

3

‘+&

/*l\ 8

10\ 14 /12

9

8

7

2

1

0

Comparisonof Swapl with 5 and 7 neighbors,Swap2 with 5
and7 neighbors,and GeneticAlgorithm

10 20 30 40 50 nmSwspl W/5

mswapl WI 7

❑ swsp2 w{ 5

n swsp2 w~ 7

v13

Figure 2. Histogram of Network Topology
costs

Figure 1. Fiber topology

OD PCR SCR maxCTD CLR
0,3 350K 350K 30 ms 10-5
0,4 350K 350K 30 ms 10-5

0,5 350K 350K 30 ms 10-5

0,7 &iOK 350K 30 ms 10-5

4,14 350K 350K 30 ms 10-5

Table 1. Offered Load

5 PERFORMANCE EVALUATION

A prototype set of fiber, traffic, and available
switches was developed to test the network topology
algorithms. The fiber topology connects fifteen nodes
and is shown in Figure 1. The offered traffic is shown
in Table 1. It is assumed that there are two types of
switches available. One switch costs $35,000 and has
four 622 Megabit per second (Mbps) ports. The sec-
ond switch costs $3, 500 and has one 622 Mbps port
and four 155 Mbps ports.

The SWAP1 w/K, SWAP2 w/K, and GENETIC
algorithms were evaluated using the prototype set of
fiber, traffic, and switches. The parameters were ad-
justed so that the number of times that common cal-
culations were done was equivalent in all algorithms.
All algorithms performed these steps 200 times. Each
algorithm was run with the same 10 seeds for the ran-
dom number generator. In the SWAP algorithms the
seed determined the nodes and the order of nodes to
be swapped. In the GENETIC algorithm the seed de-
termined the members of the initial population. The
SWAP1 w/K and SWAP2 w/K algorithms were run
with K equal to 5 and 7. The GENETIC algorithm
was run with POPSIZE = 20, MAXGENS = 10,
PXOVER = 0.8, and PMUTATION = 0.15.

CONCLUSIONS

The lowest cost network topology discovered is
$15.lK when ATM switches are placed at nodes 3, 4,
and 14. A histogram of the cost of the network topolo-
gies is shown in Figure 2. The bins are in increments
of $1OK. The best SWAP algorithm for this particu-
lar set of values was the SWAP2 w/7 algorithm which
discovered a network topology near $15. 1.K four out of
ten times, but the other six out of ten times the topol-
ogy was near $41K. Note that all the best topologies
resulting from the GENETIC algorithm are in the bins
$1OK – $20K or $20K – $30K. Therefore, it gave more
consistent results for the different random number gen-
erator seeds than the SWAP algorithms. This demon-
strates that the GENETIC algorithm has the potential
to discover a lower cost network than the SWAP1 w/K

and SWAP2 w/K algorithms. This is due to the GE-
NETIC algorithm’s inherent step of generating several
initial random topologies when initializing the mem-
bers of the population.
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